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MIXED FINITE ELEMENT METHODS FOR TIME DEPENDENT PROBLEMS:
APPLICATION TO CONTROL.
T. Dupont, University of Chicago

R. Glowinski, University of Houston, Rice University, and INRIA
W. Kinton, Rice University
M.F. Wheeler, University of Houston and Rice University
ABSTRACT '

The main goal of this paper is to discuss mixed variational formulations for
time dependent problems such as initial and boundary value problems for the heat
and wave equations in a bounded domain Q of RYM(NV > 1). Then we shall

use these formulations to derive mixed finite element approximations of the heat
and wave equations. Finally, an apFlica,tion to an exact boundary controllability
problem for the wave equation will be presented together with some numerical
results. The techniques and application briefly considered here will be discussed
with more details in a forthcoming paper.

INTRODUCTION

Mized variational principles and the associated finite element approzimations
have proved to be very useful in order to derive accurate solution methods for
boundary value problems for partial differential equations. This is particularly true

for elliptic problems (see, e.g., [1], [2] and the references therein). A strong point

of these techniques - compared to more traditional finite element methods - is that
they give fairly accurate approzimations of the derivatives; this last property is very
interesting since in many problems one is more interested by the derivatives of a
function than by the function itself. Mixed methods have also been applied to time

dependent problems (see, e.g., [3], [17]) but there are indeed very few published

papers and applications where these methods have been used for time dependent
problems compared to the more classical finite element methods. Motivated by

optimal control applications (cf. 4], [5]) we shall briefly discuss in this short article
the following topics:

(i) Mized variational formulations for the heat and wave equations (Section 1.).

(i1) Mized finite element approzimations of the heat and wave equations (Section

(iii) An application to a boundary control problem for the wave equation (Section

1. MIXED VARIATIONAL FORMULATIONS FOR THE HEAT AND WAVE EQUATIONS.
1.1 Formulation of the basic time dependent problems.

Let Q be a bounded domain of RY(N > 1) ; we denote by T the boundary of
2 . Let T be a positive number (possibly equal to +00) ; we denote by Q and ¥
the following sets of RV¥? ;
Q=0x(0,T),L=Tx(0,T).

We suppose now that physical phenomena are taking place on Q , modelled by
either the following heat equation

(1.1) us—Au= fin Q,
(1.2) u=gonXL,
+ (1.3) u(z,0) = u,(z) on Q,

* research support from Air Force grant, AFOSR - 89 -0025
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or by the following wave equation

(1.4) up — Au= fin Q,
(1.5) u=gonx,
(1.6) u(z,0) = uo(x), ue(z,0) = ui(z) on .

In (1.1) - (1.6) we have

5u azu N 62
o=l = = g A= g
=1 :

It follows from, e.g. [6], [7], that each of the two above problems has a unique
solution provided that the data f and [{q belong to well chosen functional spaces.
Since this paper is engineering oriented we shall not go into the details of those

(Sobolev type) spaces for which the above problems are well-posed (there will be
however some exceptions).

1.2 Mized variational formulations for problems (1.1) — (1.3) and (1.4) — (1.6).

The key idea is to take Vu(V = {a—% N ) as master variable ; we introduce
therefore a new unknown p defined by

(1.7) P = Vu(in Q).

Assuming that u and p are sufficiently smooth we obtain - integrating by parts with
respect to the space variables - the following mixed variation formulations:

Mized variational formulations of the heat equation (1.1) — (1.3) :

(1.8) /Q(ut —V.p = fludz =0, YoeL*(Q),a.e. on (0,T),

(1.9) /(p -q+uV-q)dz = / gq - ndl',VqeH(Q, div), a.e. on (0,T),
Q T
(1.10)  u(z,0) = uo(z) on Q.

Mized variational formulations of the wave equation (1.4) — (1.6) :

(1.11) /(utt —V-p = fludz = 0,VveL?(),a.e.on (0,T),

Q
1.12) /ﬂ(p -q+uV-q)dz = /ng -ndl',VqeH(Q, div), a.e. on (0,T),
(1.13)  u(z,0) = uo(z), ut(z,0) = uy(z).

In (1.8) - (1.13), we have used the following notation: y - z = Zfilyiz,-,Vy, zeRY:n
is the unit vector of the outward normal at I';dz = dz; - - - dzy and finally

H(Q,div) = {q|qeL*(Q),V - qeL*(Q)}.



2. MIXED FINITE ELEMENT APPROXIMATIONS OF THE HEAT AND WAVE EQUATIONS.
2.1 Generalities.
With h a space discretization step, we approximate L?(§2) and H(Q, div) by V;,
and Q4 , respectively. We suppose that Vi C L2(Q2),Qr C H(R, div) and also that
Vi and Q4 satisfy compatibility conditions implying convergence properties for the
corresponding approximations (see e.g., [1], [2] for details); an important condition
to be satisfied is:

(2.1) ’ VQh CVh.

In the particular case where  is a 2 dimensional polygonal whose boundary is the

union of segments parallel to the coordinate axis, we associate to Q a “partition”
R} such that

(7‘) Ry = {I(}’ Q= KeRp, K,

(ii) Each K is a rectangle whose edges are parallel to the coordinate axis,

(iii) If K and K'eRy, then K N K' = ¢, and either KN K = ¢, or K and K’ have
only a whole edge or one vertex in common.
Following [1], [2] and [8] - [10], a convergent choice for V4 and Q4, constructed
from the above R, is given by:

(2.2) Vi = {vn|vn|keQx, VK eRs },

Qn = {arlar = {qin}i,, Adnlke(Pry1 ® Pi) x (Pr ® Pri1),
(2.3) VKeRp; qin i3 continuous along the edges
of Ry, parallel to 0z}

in (2.2), (2.3), k is a nonnegative integer, Qr = Px ® P, P, is the space of the
polynomials in one variable of degree < s, and 7 + 1 has to be taken modulo 2.
With such a choice for V4 and Q4 , condition (2.1) is clearly satisfied.

2.2 Duiscretization of the heat equation (1.1) — (1.3).
Semt — Discretization in space :

Using the spaces Vi and Qp we shall “space discretize” (1.1) - (1.3), via (1.8)
- (1.10) as follows:
Find a pair {un(t),pr(t)}eVh X Qn, a.e. on(0,T), such that

(2.4) /(%ﬁ =V - pp — fr)vrdz = 0,YvreVy, a.e. on (0,7,
Q

(2.5) /(Ph “gr +urV - qp)dr = / grqr - ndl,VqreQp, a.e. on (0,T),
Q T
(2.6)  un(0) = uop.

In (2.4) - (2.6), f,gr and u,p are convenient approximations of f, g and u,, respec-
tively (we can take, for example, u,p, as the L?-projection of u, on Vi) .
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The above approximation is not practical since we still have to solve an ordinayy
differential system, or to be more precise a system, coupling ordinary differential

equations and (linear) algebraic equations.
Full Discretization in space — time : Concentrating (for simplicity) on the back-

ward Euler time discretization of (2.4) - (2.6) we finally obtain the following system
of difference - algebraic equations (with At(> 0) a time discretization step):

For n> 0, find {uZ'ﬁl,pZ'H}th X Qn such that

(2.7) u}’l = Uoh,
ultl gy
(2.8) / (h——-—h -V. pZH — ,':H) vpdz = 0,VupeVy,
o At
(2.9) /9 (Pr™ - aqr+upt'V.q,) dz = /Fg}f“qh -0dl, VqpeQp.

(From a practical point of view, we can easily eliminate uZ'H from (2.8), using
the fact that V- q,eVy ; we obtain then the following linear variational equation

: +1 |
satisfied by p; ™" :

{ Jo(&tV - pi PV - qp + PRt qi)dz = [ g7 qn - ndT
— Jo(up + AtFRTNV - qpdz, VqreQn; prt eQn.

Solving (2.10) can be done by a direct method - such as Cholesky’s since the bilin-
ear form in (2.10) is symmetric and positive definite - or by a conjugate gradient

algorithm (see, for example, [11]). Once p}*! is known, computing uptl from (2.8)

is straightforward. .

Similarly, instead of backward Euler, we could have used schemes such as for-
ward Euler, Crank - Nicholson, multisteps, Runge - Kutta, ....

2.3 Discretization of the wave equation (1.4) — (1.6).
Starting from the following variant of (2.4) - (2.6): Find a pair

{un(t), pa(t)}eVh X Qn, a.e.on(0,T), such that

(2.10)

2
(2.11) L(aa;h =V - pp, =~ fr)vrdz = 0,VureVy, a.e. on(0,T),

(2.12) /(ph ‘qr +urV - qpldz = / grdr - ndl,VqreQp, a.e. on(0,T),
Q I

8
(2.13)  un(0) = uon, —(;‘ti(o) = U,

we can fully discretize the wave problem (1.4) - (1.6) by the following variant of the
usual second order accurate, explicit finite difference discretization scheme of the
wave equation:

Assz{,ming that, for n > 0,uy, py and u;:_l are known compute first uZ'H as
the solution of

n+1 n—1 n

u, 4uy o —2u n rn n

(2.14) /( h |A’;f|2 b _Vp? — fMopdz = 0, YoreVi; uptleVs,
Q
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and then ppt! as the solution of

(2.15) /p}l‘“-qhdx:/g,':‘"lqh-ndl‘—/u;:'HV-qhda:,thth;pZHth.
Q r Q

A most important step is clearly the initialization of scheme (2.14), (2.15); assum-
ing that f,g,u,,u; are sufficiently smooth we shall proceed as follows: compute
ul,u;?,p$ and u}

(2.16) U = Uoh, U = u,fl + 2Atuyp,

(2.17) { PieCh,

JaP? - andz = [ gsqn - ndl — [, uonV - qpdz, VareQs.

As shown in [12], up(t) and pa(t) will converge to u(t) and Vu(t)(u : solution of
(1.4) - (1.6)) as h and At — 0 if a stability condition such as

(2.18) At < Ch

is satisfied.

Second order, unconditionally stable implicit variants of the above scheme can
be obtained; they will discussed in a following paper, together with applications to
boundary control of the wave equation.

3. APPLICATION TO AN EXACT CONTROLLABILITY PROBLEM FOR THE WAVE
EQUATION, VIA DIRICHLET BOUNDARY CONTROLS.

3.1 Formulation of the boundary control problem.

We follow here [4], [5]; we consider then a phenomenon taking place in Q and
modelled by the wave equation (we keep the notation of Section 1):

(3.1) U — Au=01n Q,
with the initial conditions
(3.2) u(z,0) = us(z),us(z,0) = uy(z) in Q.

"The problem here is to find g defined over } (=T x (0,T')) such that the following
final conditions

(3.3) u(z,T) =0, u(z,T) =0 on Q
hold if one has
(3.4) u=g onX

as boundary condition.

It has been proved by several authors (see [4], [5], [13] for references) that such a
g exists provided that T is sufficiently large (the lower bound of the T’s for which
(3.3) holds, Vu,, uy, is - not surprisingly - of the order of diameter (Q)).
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3.2 Calculation of an ezact Dirichlet control via the Hilbert Uniqueness Method
of J. L. Lions

In [4], [5], J.L. Lions has introduced and analyzed a systematic way for con-
structing Dirichlet controls for which (3.3) holds. The construction technique is

systematic and based on the Hilbert Uniqueness Method (HUM) to be briefly dis-
cussed below. From now on, we suppose that

(35) uaeLA (), 11 eH (@) (= (HA()),
where 5
H)(Q) = {v|veL*(Q), 6::- eL*(Q),Vi=1,---N,v =0 on r'},

H~Y(Q) is the dual space of HI(Q),
and we define E and E' by

(3.6) E=H,(Q)x L*Q),E = H™Y(Q) x LY(9).
Next we define an operator AeL(E, E') as follows:
(7) Take e = {e,,e; }€E;
(%2) Integrate from 0 to T :
(37)1 ¢tt - A¢ =0 an7
(3.7)2 g=00n)",
(3.7)3 $(z,0) = eo(x), d¢(z,0) = e1(z) on Q.
(737) Integrate from T to 0 :
(3.8)1 1 — A = 0 inQ,
(3.8); P = g—: on y ,
(3.8)3 Y(z,T) = 0,v¢(z,T) =0 on .
(1v) take
(3.9) Ae = {1¢(0), —(0)},

where 1(0) (resp. 1,(0) ) is the function z — ¥(z,0) (resp. = — y(z,0)).
It follows from J.L. Lions [4], [5] that AeL(E,E"),VT > 0; moreover, if T is
sufficiently large (T' > diameter () ) then A is a strongly elliptic operator from E

onto E'. In addition to these properties, A is self-adjoint and satisfies (with obvious
notation):

(3.10) (Ae,e) =/ gg%%dth,Ve,e'eE;
2

in (3.10), <-, > denotes the duality pairing between E' and E which satisfies

(Ae,e'y = /Q(Ae) -e'dz
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if Ae is sufficiently smooth.
Application to the exact boundary controllability of the wave equation :

(i) Solve

(3.11) Ae = {uy, —u,}.

(ii) Solve (3.7), taking for e , in (3.7)3 , the solution of (3.11).

(iii) Take g = g—i ony,.

If T is sufficiently large, it follows - from the properties of A - that (3.11) has a
unigue solution in E ; we have (cf. [4], [5]) geL*(3"), and the corresponding solution
of (3.8) satisfies (3.1) - (3.4), implying that ¢ is a Dirichlet boundary control for
which the exact controllability property (3.3) holds. Actually, of all the Dirichlet
boundary control for which exact controllability holds, the one obtained by HUM,
Le. by solving (3.11) is the only one of minimal norm in L%(3"), as shown in [4],
[5]. From the properties of A , problem (3.11) can be solved by a conjugate gradient
algorithm operating in space E ; such an algorithm is described in [13], [14], together
with conforming finite finite element implementations of it.

3.3  Mized formulation of the boundary control problem.

In fact, we shall describe a mixed formulation of problem (3.11):
Assuming that the initial data u, and u; are sufficiently smooth, so that we

can use integral representations, the problem is now to find a triple {€o,Pos €1}
satisfying

(3 12) { {60) po}EWo, 61€L2(Q);V{vo,Wo}eWo,vleLiZ(Q) we have

fa(¢t(0)vo — p(0)v1)dz = [, (u1vo — u,v; )dz,

where in (3.12):
(i) The space W, is defined by

(3.13) W, = {{vo, 7o }HvoeL2(Q), moe( L2(Q))V, Jo(mo - a4+ v,V - q)dz = 0,
' VqeH(Q, div)};

it can be shown that
{vo, Mo }eW, = v,e HX(Q), T = Vv,.

(ii) 1(0) and ,(0) are obtained from e,, po, €; as follows:
Integrate from 0 to T the mized formulated following wave equation (cf. Section

2):

(3.14)1 A(@t — V- plvdz = 0,VveL*(Q), a.e. on(0,T),
(3.14), /Q(p -2+ ¢V - z)dr = 0,VzeH(Q,div), a.e. on (0,T),
(3.14), ¢(z,0) = e,(x), d:(z,0) = e1(z) on Q;
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then from T to 0 (using the fact that %‘5 =p-non » )k
(3.15); /(¢tt — V- q)vdz = 0,VveL*(Q), a.c. on(0,T),
Q

(3.15), /(q-z + YV - z)dz = / p-nz-ndl\VzeH(Q, div), a.e. on(0,T),
Q r
(3.15)s9(z,T) = 0,%¢(z,T) = 0 on Q.

An easy calculation will show that (with obvious notation):

Jo(#:(0)e;, —4(0)e})dz = [ p-np'- ndldt,
(3.16) { >

V{eoa To; 61}7 {61)7 ”T:); 6,1}6W0 X LZ(Q)

(From (3.16) it appears that the bilinear form occuring in (3.12) is symmetric
and positive semi definite ; actually, for T' sufficiently large it is strongly elliptic
(coercive) over (W, x L*(£2))?. From these properties, problem (3.12) can be solved

by a conjugate gradient algorithm operating in W, x L?(Q) ; such an algorithm is
described in Section 3.4.

3.4 Conjugate gradient solution of problem (8.12).

3.4.1. Generalities.
Problem (3.12) is a particular case of

(3.17) Find ueV such thata(u,v) = L(v), VveV,

where in (3.17): ,

(i) V is an Hilbert space, equipped with the scalar product (-,+) , and the corre-
sponding norm || - || .

(i) a:V xV — R is bilinear, continuous and V- elliptic (i.e. Ja > 0 such that
a(v,v) > al|v]|?, YveV).

(iif) L : V — R is linear and continuous.

It is well known (cf., e.g., [15, Appendix 1]) that under the above hypotheses,
problem (3.17) has a unique solution. If in addition to (i) - (iii), the bilinear form

a(,-) is symmetric then problem (3.17) is equivalent to the following minimization
one

uev,
(3.18) {J(u) < J(v), VeV,

with J(v) = a(v,u) — L(v). Problem (3.17), (3.18) can then be solved by the

following conjugate gradient algorithm:

Initialization
(3.19) u’eV is given.
Solve then
g°ev,
(3.20) {
(¢°,v) = a(u®,v) — L(v), VveV.

8



If g° =0, or is “small”, take u = u® ; if not, set
(3.21) w® = g°.

Now for n > 0, suppose that u™, g™ w", are known with w™ # 0 ; define then
utl gntl yntl g follows:

Descent :  Compute

(322) pn = llg"I*/a(w", w),

and

(3.23) ™t =y — pw™.

Test of the convergence and updating the descent direction :  Solve
g"tlev,

(3.24)
(g™, v) = (g™, v) — pra(w™,v), VueV.

If g™t =0- oris small-take u = u™*! ; if not compute

(3.25) 1 = g™ P /1™,

and update w™ by
(3.26) wtl = g™y W™

Don=n+1 and go to (3.22).
The above algorithm converges, Vu°eV, and we have (cf. [16]):

Ve — 1\ "
(3.27) [u™ = ul] < Clfu® — u) ( Y21,
Ve +1

where C' is a constant, and where the condition number v, 1s given by
(3.28) "2 a(w,0)/ " afv,v)
. Ve = a(v,v a(v,v
C eSS N T pes N T)

with § = {v|veV, ||v]| = 1}.
3.4.2 Application to the solution of problem($.12)

Since problem (3.12) is a particular problem (3.17), with V = W, x L2(Q), it
can be solved by the conjugate gradient algorithm (3.19) - (3.26). An important

practical issue is the proper choice of the scalar product to be used over Wo x L2(Q).
A fairly convenient one is provided by

VoV, + To - Ty, + v} )dz,
(329) fﬂ( 0 1 1)
V{va, moj 01}, {ul w0t JeW, x L2(S).
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Applying algorithm (3.19) - (3.26) to the solution of problem (3.12), with W, x L%(Q)
equipped with the scalar product (3.29), we obtain the following algorithm:

Initialization :

(3.30) {e2, pYeW,, e3eL*(Q) are given.

Integrate then from 0 to T the wave equation

(3.31), /((ﬁft — V- p°)vdz = 0,VveL*(Q), a.e. on (0,T),
Q

(3.31), /(p" -z + ¢°V - z)dz = 0,Vze H(Q, div), a.e. on (0,T),
Q

(3:31)s ¢°(0) = €5, 47(0) = €.

Then from T to 0 :

(3.32); /(1/)t°t = V- q°)vdz = 0,YveL?(Q), a.e. on (0,T),
Q
3.32), /(q° 2+ 9°V - z)dr = / p° - nz - ndl,VzeH(Q, div),
Q r
a.e. on (0,7),

(332)s  °(T) = 0,(T) = 0.

Compute then {g2,7g3} and g% as follows: Solve the mized elliptic problem:
Find {g3,792}eW, such that

N e [ 20 = wr o, oer? (@)
(3.33), fﬂ (792 - q+ g2V - q)da = 0,YqeH(Q, div),

and then

(3.34) 91 = uo — %°(0).

If {g2,7g} = {0,0},9¢ =0, or are small, take p° - nlz as boundary control; if

not, set
(3.35) {we, Twy;wi} = {92,793 97}

Then for m 2 0, assuming that {e7,p2}, e, 6", %", {g2, 7g7}, gF, {wl, Twl}, wp
are known, we compute {eZt!, pr¥i} ntl gntl yn+1 {gn+Y, mgnt1 ],
g{lﬂa{wf,'“,?rw;'“},w?“, as follows :

Descent :

10



Integrate from 0 to T

(3.36);

(3.36);

(3.36)s

/(art — V- p")vdz = 0,VveL?*(Q), a.e. on (0,T),
Q

/(5" 24+ ¢ V- z)de = 0,VzeH(Q,div), a.e. on (0,T),
Q

¢(0) = wp, 8, (0) = w}.

Then from T to 0 :

(3.37),

(3.37),
(3.37)s

/ (Y — V- G )vdz = 0, VoeL*(S),

e om (0,T),

/(ﬁ"-HE”V-Z)dw = /ﬁ"-nz-ndI‘,VzeH(Q,div),
aee. on 0,T), ’

P(T) = 0,%;(T) = 0

Solve now the mized elliptic problem: Find {g*,ng"}eW, such that

(3.38),

(3.38),

and set

(3.39)

/(?3 ~ V755 )vdz = / E?(O)vdx,VveLz(Q),
Q Q

/(7@3 ‘q+ 9,V - q)dr =0,VqeH(Q, div),
Q

7r =% (0).

Compute now

(3.40)

and then

(3.41)
(3.42)
(3.43)
(3.44)

_ S s Pl 124197 1) de
Jo (w2l (©)—wl ¥ (0))dz
Lo (g2 1P +mg2 1> +g712) dz

@ wr s mwr gt 0l da

n

{ea™,pot it} = {ef, by, e} — pu{w?, mwl, wil,

{¢" T, p" Y = {¢™,p"} — pu {8, D"},
{9, q"} = (9™, q"} — pu{®", T},

{92770 01"Y = {05,797, 97, = pu{75, 735,75 ).

11



Test of the convergence. New descent Direction :
If {97, mgp*t, g7} = {0,0,0} - or is small - take pm+! . n|__ as boundary

control; if not compute

_ JoUgs™ 1 + Imgg**|* + |97 *)da

3.45 0%

(345) A (P R e P B

and then

(3'46) {w;‘+1,7rw;l+1,w?+1} = {g;z+1’7rg;z+l,g;z+l} +7n{w37ww3’w?}°

Do n=n+41 and go to (3.36).
Remark 8.1 : Problems (3.33) and (3.38) are particular cases of

(3.47) /(u —V . plds = / fodz,YoeL*(Q),
Q Q

(3.47), / (p-q+uV-q)dz =0,YqeH(Q, div),
Q

which is the mixed formulation of the following Dirichlet problem
(3.48) —Autu=finQ, u=0onT.

Observing that V - qeL%(Q),VqeH(Q, div), we can eliminate  from (3.47)1,(3.47)2
to obtain that p satisfles (if feL?(R)) :

(3.49) peH(Q, div),
' Ja(V PV -q+p-q)dz = - [, fV - qdz,VqeH(Q, div).

Solving (3.49) (in fact its discrete variants) is fairly easy and can be done by con-
jugate gradient algorithms (see, e.g., [9] for details). Once p is known, one obtains
easily u from (3.47); . Combining the above algorithm with the mixed finite element
approximations and time discretization schemes of the wave equation discussed in
Section 2 is (almost) straightforward; this issue will be discussed in a forthcoming
paper.

3.4.3. Numerical experiments.

The mixed finite element approximation and time discretization schemes of the
wave equation, described in Section 2, have been combined to algorithm (3.30) -
(3.46), to solve problem (3.11) when Q = (0,1) x (0, 1) and T = 2+/2 . Using the
Fourier series techniques described in [13] we have computed those initial data U
and v for which the solution e(= {e,,e;}) of (3.11) is given by

(3.50) eo(r1,22) = sinmz; sin g, e = mv/ 2e,.
We have used the mixed finite element approximations of Section 2, with k = 1

and Ry, the regular partition of Q associated to the vertices {i%, j h} with 0 <4,5 <
N, N being an integer such that Nh = 1 ; we have taken N = 16,32,64 . The
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time discretization of the various wave equations involved in the calculations was
obtained using the (conditionally stable) explicit scheme described in Section 2.

Obtaining the (approximate) values of the control g—z = p-non y, , was quite
easy since the values of the fluxes (i.e. of the normal components of p;, ), at the

element interfaces and at the boundary I' , are the natural degrees of freedom for the
functions belonging to the finite dimensional space @, approximating H(Q, div).

For h = 1/16(resp.1/32,1/64) the finite dimensional variant of algorithm (3.30)
- (3.46) converges in 48 (resp. 72, 119) iterations (the number of iterations varies

- approximately - like v/N ). These numbers are much higher than those obtained
in [13], where the space approximation was achieved by a conforming finite element
method, cougled to a biharmonic Tychonoff regularization to eliminate spurious

oscillations. On the other hand, using, as in the Fresen’g paper, mixed finite element
approximations, it is not necessary to use regularization to obtain very good nu-

merical results, as shown in Figures 3.1 (a), (b), (¢) (N=6), 3.2 (a), (b), (c) (N=32),
3.3(a), (b), (c) (N=64).

Figures (a) (resp. (b)) show the variation of the exact (-) and computed (- - -)e,
(resp. e ), for 0 < z; < 1,25 = -5. Figures (c) show the variation on (0,T) of the
L?(T')— norm of the exact and approximate boundary controls.

All the above calculations have been done on a CRAY X-MP supercomputer.

4. CONCLUSION.

In this paper we have discussed the application of mized finite element methods
to the numerical solution of direct or inverse problems for time dependent equations.
These mixed methods are robust and accurate. They are however more complicated

to implement than the traditional finite element methods. Indeed many important
issues remain concerning the practical use of the mixed methods considered here,

such as speeding up calculations by multigrid and/or domain decomposition meth-
ods (cf. [10]); we intend to investigate them in the near future.
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Figure 3.1 (c): Comparison between exact (-) and computed (*) value of __m?v__huﬁ,v?”u\;v.
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Figure 3.2 (b):

Comparison between exact (-) and computed (*) value of e;(x,, .5) (h=1 /32).
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Figure 3.3 (a): Comparison between exact (-) and computed () value of ey(xy, .5) (h=1/64).
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